π Exercise M2.01#
The aim of this exercise is to make the following experiments:
train and test a support vector machine classifier through cross-validation;
study the effect of the parameter gamma of this classifier using a validation curve;
use a learning curve to determine the usefulness of adding new samples in the dataset when building a classifier.
To make these experiments we first load the blood transfusion dataset.
Note
If you want a deeper overview regarding this dataset, you can refer to the Appendix - Datasets description section at the end of this MOOC.
import pandas as pd
blood_transfusion = pd.read_csv("../datasets/blood_transfusion.csv")
data = blood_transfusion.drop(columns="Class")
target = blood_transfusion["Class"]
Here we use a support vector machine classifier (SVM). In its most simple form, a SVM classifier is a linear classifier behaving similarly to a logistic regression. Indeed, the optimization used to find the optimal weights of the linear model are different but we donβt need to know these details for the exercise.
Also, this classifier can become more flexible and more expressive by using a so-called kernel that makes the model become non-linear. Again, no undestanding regarding the mathematics is required to accomplish this exercise.
We will use an RBF kernel where a parameter gamma
allows to tune the
flexibility of the model.
First letβs create a predictive pipeline made of:
a
sklearn.preprocessing.StandardScaler
with default parameter;a
sklearn.svm.SVC
where the parameterkernel
could be set to"rbf"
. Note that this is the default.
# Write your code here.
Evaluate the generalization performance of your model by cross-validation with
a ShuffleSplit
scheme. Thus, you can use
sklearn.model_selection.cross_validate
and pass a
sklearn.model_selection.ShuffleSplit
to the cv
parameter. Only fix the random_state=0
in the ShuffleSplit
and
let the other parameters to the default.
# Write your code here.
As previously mentioned, the parameter gamma
is one of the parameters
controlling under/over-fitting in support vector machine with an RBF kernel.
Evaluate the effect of the parameter gamma
by using
sklearn.model_selection.ValidationCurveDisplay
.
You can leave the default scoring=None
which is equivalent to
scoring="accuracy"
for classification problems. You can vary gamma
between
10e-3
and 10e2
by generating samples on a logarithmic scale with the help
of np.logspace(-3, 2, num=30)
.
Since we are manipulating a Pipeline
the parameter name is svc__gamma
instead of only gamma
. You can retrieve the parameter name using
model.get_params().keys()
. We will go more into detail regarding accessing
and setting hyperparameter in the next section.
# Write your code here.
Now, you can perform an analysis to check whether adding new samples to the
dataset could help our model to better generalize. Compute the learning curve
(using
sklearn.model_selection.LearningCurveDisplay
)
by computing the train and test scores for different training dataset size.
Plot the train and test scores with respect to the number of samples.
# Write your code here.